
1

シェルプログラミング

• コマンドをパイプでつなげるだけでは済
まないような、ある程度まとまった処理
を複数のコマンドを制御構文を用いたり
してファイルとしたものを（シェル）スクリ
プトと呼ぶ。シェルプログラム、バッチな
どともいう。

• .bash_profile もシェルスクリプトなので、
このファイルを解読したい

163

164

どのシェルを使うか？

• シェルスクリプトは、どのシェル用のも
のかということで書き方 （ 文法 ） が異
なる

• bash特有の文法を学ぶよりは、bashの
もとになったsh シェル（Bourne shell）用
の文法を取り上げよう
（bashはＧＮＵプロジェクトがshと互換性

を持たせ、機能を強化したシェル。
bourne again shell の意味）

2

（ 例 ）以前のクイズで、単語ファイルの真ん
中の語を求めたが、

1. ファイルに単語がいくつあるか？

2. 真ん中の単語は何番目に当たるか？

3. その単語は何か？

という３つの処理が必要だった。
これを行うシェルスクリプトを作ってみよ
う。

165

シェルスクリプトの作成手順

1. シェルスクリプトをテキストエディタを
使って作成する

2. 作成したスクリプトを実行可能ファイ
ルにする

3. スクリプトの動作確認を行う

4. 動作確認でエラーが出れば修正する

166

3

167

基本事項 シェルスクリプトの形式

• $ sh ファイル名
でも起動できるが、大抵は次のようにする。

• ファイルの最初に
#!/bin/sh
を書き、使用するシェルを明示する。

• 処理は左から右、上から下へ進む

（ 例 ） 次の内容のファイルhello.shを作る。
#!/bin/sh
#で始まる行はコメント
echo ’Hello, World’

168

このファイルを ls –l で見ると
- r w - r - - r - - 1 fr0123 hello.sh

のようになっているので、実行権を

$ chmod +x hello.sh

のようにして与える。（ これをしないと許可があ
りませんといわれて、実行できない ）

実際に実行するには

$./hello.sh または hello.sh

と打つ。（ コマンドサーチパスにカレントディレク
トリが入っているかどうかです！ ）

4

169

シェル変数
• 代入

variable=value

変数名variableに値valueを代入する
variableの変数がない時は作られる
=の前後に空白を入れてはいけない

• 参照
$variable

• 変数の削除
unset variable

•

170

シェル変数の操作例

$ w=/usr/local

$ echo $w

/usr/local

$ ls $w

（ 略 ）

$ unset w

$

5

171

ワードリストを値とするシェル変数

スペースで区切られた文字列の並びを
変数の値としたいときは
$ w=(/usr /usr/bin /usr/local)
のように値の部分を丸括弧で囲む

値全体を参照するときは
$ echo ${w[@]}

個々の要素を参照するときは
$ echo ${w[0]} ${w[1]} ${w[2]}
のようにする

172

バッククォートによるコマンド置換

• バッククォート（ アポストロフィと向きが
逆のもの ）で囲まれた場合、その中に
書かれたコマンドを実行し、その結果
をその位置に埋め込む

（例） $ echo Today is `date`
$ w=”Today is `date`”

（注意） このようにバッククォートはア
ポストロフィと意味が全然違うので、き
ちんと使い分けること！

6

173

数値と文字列

• ｓｈのデータ形式： 基本的に文字列

• 計算が必要な時：
`expr 数式`

注意：数式の各要素は空白で区切る
（例） $ echo `expr 2 + 3`

$ echo `expr 2 ¥* 3 - 1`

$ echo `expr ¥(2 + 4 ¥) / 5`

$ echo `expr 4 % 2`

174

辞書の真ん中の語を求める
シェルスクリプトを作ってみよう

1. まず変数dictwcに辞書のサイズを求める
#!/bin/sh

dictwc= ` look . | wc -l`

2. dictwcの半分 （ 真ん中 ） を求める
mid=`expr $dictwc / 2 + 1`

3. 真ん中の語が何番目なのかとその単語を表示する
echo -n ”$mid/ $dictwc = ”

echo `look . | head -$mid | tail -1`

7

175

前スライドの欠陥

辞書が偶数個の単語から構成されるとき
は、まちがった結果を表示してしまう

↓

偶数個の時は、真ん中の2個の単語を表
示させたい

↓

奇数個の時と偶数個の時で処理を分ける

176

辞書が偶数個でも
大丈夫なように書くと

#!/bin/sh

dictwc=`look . | wc -l`

if [`expr $dictwc % 2` -ne 0]; then

Nth=`expr $dictwc / 2 + 1`

echo ` look . | head -$Nth | tail -1`

else

Nth=`expr $dictwc / 2`

echo ` look | head -$Nth | tail -1`

Nth=`expr $NTH + 1 `

echo ` look . | head -$Nth | tail -1`

fi

8

if の書き方１

if [条件1]
then

コマンド列１
elif [条件２]
then

コマンド列２
else

コマンド列３
fi

177

if の書き方２

if [条件1] ; then コマンド列１
elif [条件２] ; then コマンド列２
else コマンド列３ ; fi

（つまり then, else, elif, fi はセミコロ
ンを使って同じ行に書くことができる）

（注） [と条件の間にはスペースを入
れる

178

9

if の書き方３

if test 条件1
then

コマンド列１
elif test 条件２
then

コマンド列２
else

コマンド列３
fi

179

数値比較演算子

表記 意味

a -eq b Equal to

a -ne b not equal to

a -gt b Greater than

a -lt b Less than

a -ge b greater than or equal to

a -le b less than or equal to
180

10

論理演算子

表記 意味 例

! expr Exprでなければ真
（否定）

! -r file.txt
(file.txtが読み込
み可能でなけれ
ば真)

expr1 -a
expr2

expr1かつexpr2が
成り立てば真

$a -eq 1 -a
$b -eq 10

expr1 -o
expr2

expr1またはexpr2
が成り立てば真

$a -eq 1 -o
$b -eq 10

181

パターン比較演算子

表記 意味

string = = pattern 文字列stringと文字列
patternが等しければ
真

string != pattern 文字列stringと文字列
patternが等しくなけ
れば真

182

11

183

ファイル属性演算子

-ｒ filename ファイルが読めれば真

-w filename ファイルが書ければ真

-x filename ファイルが実行可能ならば真

-e filename ファイルが存在すれば真

-O filename そのシェルスクリプトを実行した
ユーザがfilenameの所有者であるとき真

-f filename ファイルが通常のファイルなら真

-d filename ファイルが存在しディレクトリなら真

184

ファイル関係演算の例

#!/bin/sh

カレントディレクトリにファイルa.outが存在し，

実行可能なら実行

if [-f ./a.out -a -x ./a.out] ; then

./a.out

else

echo ”a.out not found”

fi

12

185

コマンドのグループ化

現在のシェルの子プロセス（サブシェル）と
して実行される

• cmd1; cmd2
コマンドcmd1の後にコマンドcmd2を実行

• (cmd1; cmd2)
cmd1とcmd2をコマンドグループとして実行

• cmd1 && cmd2
cmd1が成功したらcmd2を実行

• cmd1 | | cmd2
cmd1が失敗したらcmd2を実行

186

グループ化されたコマンドの例

コンパイルが成功した時だけ，./a.outを実行
$ gcc test.c && ./a.out

カレントディレクトリを変えずに実行
$ (cd prog1; ls)

13

繰り返し処理 for

for 変数 in 単語リスト

do
コマンド列

done

（注） for 変数 in 単語リスト ; do コマ
ンド列 ; done も可

187

for の例

#!/bin/sh
for i in *.c
do

rm -i $i
done

188

14

繰り返し処理 while

while 条件
do

コマンド列
done

（注）
while 条件 ; do コマンド列 ; done
も可

189

while の例

#!/bin/sh

i=1
a=0
while [$i -le 3]
do

a=`expr $a + $i`
echo $i $a
i=`expr i + 1`

done
190

15

191

もっと勉強したい方は

ブリン著 「入門UNIXシェルプログラミング」
ソフトバンク

Robbins & Beebe 著 日向あおい訳

「詳解 シェルスクリプト」 オライリー・ジャ
パン

など

